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A mathematical model is proposed to describe atmospheric solitary waves at the 
interface between a 'shallow' layer of fluid near the ground and a stationary upper 
layer of compressible air. The lower layer is in motion relative to the ground, perhaps 
as a result of a distant thunderstorm or a sea breeze, and possesses constant vorticity. 
The upper fluid is compressible and isothermal, so that its density and pressure both 
decrease exponentially with height. The profile and speed of the solitary wave are 
determined, for a wave of given amplitude, using a boundary-integral method. Results 
are discussed in relation to the 'morning glory', which is a remarkable meteorological 
phenomenon evident in the far north of Australia. 

1. Introduction 
The study of solitary waves in recent decades has been extensive, and a vast literature 

now exists on the topic. These phenomena are of great importance, not only in fluid 
mechanics, but also in fundamental physics and optics, for example. A substantial 
review of much of the earlier work on solitary waves is presented by Miles (1980), who 
concentrates on approximate theories of the Korteweg-de Vries type. The solitary 
wave is also discussed briefly in a review article by Schwartz & Fenton (1982), in the 
context of finite-amplitude surface waves in fluid mechanics. 

Much of the earlier work on solitary waves in fluid mechanics made use of weakly 
nonlinear theories, and an elegant exposition of such a development is given by Stoker 
(1957). More recently, however, numerical schemes have been devised in which the 
exact (irrotational or constant vorticity) equations are solved in full, without additional 
approximation. Hunter & Vanden-Broeck (1 983) used an integral equation technique 
in an inverse plane to obtain irrotational solitary waves of arbitrary amplitude below 
the maximum. The wave of maximum height possesses a corner at its crest, enclosing 
an angle of 120", and cannot readily be computed using general integral equation 
methods. Hunter & Vanden-Broeck overcame this difficulty by resorting to a power- 
series type solution in a conformally mapped plane, in which the branch type 
singularity resulting from the 120" angle at the wave crest was accounted for explicitly 
in the assumed form of the solution. 

Constant vorticity can be accommodated within calculations of the type described 
above, and has been addressed by several authors, in view of its relevance to shear 
flows. Benjamin (1962) investigated weakly nonlinear theories, and showed that the 
value of free-stream speed at which the branch of solitary waves bifurcates from the 
uniform flow solution is increased by the presence of vorticity. Both periodic and 
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solitary waves in shear flows were studied by Teles da Silva & Peregrine (1988) using 
an integral equation technique. They identified limiting waves having an enclosed angle 
of 120" at the crest, exactly as for irrotational waves, and also suggested that purely 
rotational waves, in the absence of gravity, might ultimately tend to a limiting form 
possessing overhanging portions in the free surface, as the wave amplitude becomes 
infinite; the profile would resemble a circle above a horizontal line. These predictions 
have been confirmed by Vanden-Broeck (1994), who computed a family of limiting 
solitary waves for which the vorticity is sufficiently strong to permit infinite amplitude 
disturbances with large fractions of over-hanging free surface. 

Solitary waves at the interface of two fluids are also of interest, and occur both 
within the ocean and in the atmosphere. Numerical solutions for interfacial solitary 
waves were computed by Pullin & Grimshaw (1 988), using a boundary-integral 
technique combined with conformal mapping. They also obtained large amplitude 
configurations close to a limiting form enclosing an angle of 120" at the crest, in 
addition to waves of unbounded amplitude in the Boussinesq limit as the densities of 
the two fluids became nearly equal. When constant vorticity was present, and in the 
Boussinesq limit with zero vorticity, the extreme interfacial waves were again found to 
possess pronounced overhanging regions. 

The situation in the atmospheric is possibly more complex than the oceanographic 
case, and a simple model of solitary waves occurring at the interface of two 
homogeneous fluids of different densities may be inappropriate. Indeed, it seems 
probable that atmospheric solitary waves can form under a variety of circumstances. 
They are evidently possible within continuously stratified fluids, and have been studied 
in that case by Miesen, Kamp & Sluijter (1990) and Turkington, Eydeland & Wang 
(1991), for example. In addition, waves in the atmosphere can form along a pycnocline, 
which is essentially an interface between two fluids of different densities, since there is 
a rapid change of density in this region. Such a situation can arise when a cool down- 
draft from a thunderstorm penetrates beneath the existing stratified atmosphere, and 
progressive waves in such circumstances have been modelled by Forbes & Belward 
(1992, 1994). A recent paper by Manasseh & Middleton (1995) gives details of 
observations of atmospheric waves produced by precisely this mechanism, when a 
thunderstorm moved past Sydney airport in Australia; an analysis of weakly nonlinear 
theory led these authors to conclude that the atmospheric waves they observed were, 
in fact, fully nonlinear. 

Perhaps the most spectacular instances of atmospheric solitary waves are the 
'morning glory' waves that form in the far north of Australia, on the southern coast 
of the Gulf of Carpentaria in the state of Queensland. These are remarkable 
disturbances in the lower atmosphere, which occur in the early morning with 
considerable regularity during the late spring dry season (September to November) in 
this remote and inaccessible part of the continent. They are usually accompanied by a 
wind squall and a striking low cloud formation. Their regularity and clear visibility 
makes the Gulf of Carpentaria a unique location for the experimental study of these 
waves, and much work has now been undertaken on them. Results of observations are 
reported by Smith and Morton (1984), for example, and spectacular photographs of 
morning glories are given in the papers by Clarke, Smith & Reid (1981), Christie & 
Muirhead (1983) and Christie (1992). The base of the cloud is about 300 m above 
ground, and the disturbance moves at 10-20 m s-l. The amplitude of the solitary wave 
can be at least lOOOm, and the phenomenon is remarkably two-dimensional in 
appearance, with a long straight crest extending from one horizon to the other. The 
wave may propagate inland for very great distances, in excess of 300 km, with only 
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slight change of form. A recent article by Reeder et al. (1995) documents an event in 
which two morning glories interacted over the Gulf of Carpentaria. 

It is, of course, the case that large amplitude atmospheric solitary waves exist in 
regions other than Australia’s Gulf of Carpentaria. A solitary wave on the southern 
coast of Australia, near Adelaide, was detected by Drake (1984), who monitored the 
migration of insects in the wave using radar observations. Rottman & Einaudi (1993) 
describe a solitary wave event measured in the United States in 1969 that travelled a 
very great distance across land, and a phenomenon similar to the morning glory was 
observed in Oklahoma in 1982, and is described by Haase & Smith (1984). 

Much work exists on the modelling of the morning glory phenomenon, and usually 
involves weakly nonlinear analyses of some type. Christie (1989) considered a 
Benjamin-Davis-Ono equation and a modification to account for turbulence, and a 
similar technique is adopted by Rottmann & Einaudi (1993). More recently, some 
numerical results obtained from a study of Long’s equation have been presented by 
Brown & Christie (1994). 

The purpose of the present paper is to develop a fully nonlinear method for 
modelling atmospheric interfacial solitary waves. using a straightforward integral 
equation method in primitive variables, similar to that presented by Vanden-Broeck 
(1994). This method is capable of computing waves of arbitrary amplitude, and it is 
clear from the observations of morning glory solitary waves that the amplitude may 
exceed the depth of the lower fluid layer, so that highly nonlinear waves are an expected 
outcome. The original model of Forbes & Belward (1992) is used to describe the 
morning glory, and consists of a layer of cool, incompressible air moving beneath a 
stationary atmosphere that is compressible and isothermal. In addition, shear is 
included in the moving lower layer, as a simple model of the interaction of the fluid in 
this layer with the ground. 

2. The two-fluid model 
We consider a two-fluid system, in which cool, essentially incompressible air is 

moving beneath a stationary compressible atmosphere. A Cartesian coordinate system 
( X ,  Y )  moves with the wave, so that the flow is steady in this moving frame. The X -  
axis is located along the horizontal ground, and the Y-axis points vertically (in the 
opposite direction to the acceleration g due to gravity), and the solitary wave is 
assumed to be symmetrical about the Y-axis. The upper, compressible fluid will be 
referred to as layer 1,  while the lower incompressible air will be denoted as layer 2. 
There is assumed to be a sharp interface between the two fluid layers, at height H above 
the ground, far from the wave. 

In the upper fluid (layer l ) ,  the stationary air is assumed to be isothermal, with 
temperature & and universal gas constant R. It follows from the ideal gas law and the 
hydrostatic pressure condition that the density and pressure in this upper layer have the 
well-known exponential forms 

where the symbols p and p represent density and pressure, respectively, and A ,  is a 
constant with a value yet to be determined. In reality, the upper layer 1 would be in 
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motion to some extent, instead of being completely at rest, as is assumed here; 
nevertheless, the work of Forbes & Belward (1994) indicates that this is unlikely to 
affect the results obtained here, for most physically realizable wind speeds in upper 
layer 1. Consequently, the assumption of a stationary upper fluid is expected to be 
adequate. 

The lower fluid in layer 2 is assumed to be in motion, perhaps as the result of a 
distant thunderstorm, or else due to sea breezes in the case of the morning glory 
phenomenon. At ground level, the horizontal wind speed (relative to the moving wave- 
based coordinates) is c, but friction effects in this narrow ground layer give rise to a 
vorticity distribution which is assumed to be constant, for the sake of simplicity, and 
of magnitude w .  Far from the wave, the velocity vector q2 = u, i+ ~ l , j  therefore has 
horizontal component u, --f c + w Y and vertical component v, --f 0, as X - t  & co. At each 
point in lower fluid 2, the vorticity is thus curl 4 = -wk, where the symbols i , j  and k 
represent the three unit vectors in the directions of the X- ,  Y- and Z-axes, respectively. 

The assumption of constant vorticity in the lower layer is an approximation to the 
true situation, and it has the advantage of affording a considerable analytical 
simplification in the calculations. In measurements of pre-glory wind velocity 
components reported by Smith (1988), it is evident that the horizontal wind speed does 
indeed have an approximately linear profile up to about 300m height, with the 
direction of flow towards the approaching disturbance (so that w > 0). However, above 
300 m, a linear speed profile ceases to apply, and it is even possible for flow reversal to 
occur. Thus for the morning glory wave, the structure of the background shear flow 
may not necessarily be due solely to friction effects in the moving lower layer. 
Nevertheless, it will be seen that the assumption of a linear profile uz --f c + o Y ahead 
of the wave enables us to account for important morning glory effects, such as the 
rolling that is observed within the wave, as well as the low-altitude wind shear 
associated with it. Christie & Muirhead (1983) and Smith (1988) identify this wind 
shear as a significant hazard to aircraft. 

Following Forbes & Belward (1992), it is convenient to define the pressure PA at 
ground level, far from the wave. Thus p,(X, Y )  --f PA as X +  & 00 and Y+ 0. In other 
words, the quantity PA would simply be the barometric pressure measured by an 
observer on the ground either long before or long after the morning glory event had 
passed overhead. From Euler's equation of motion, it follows that the pressure in lower 
layer 2 far from the wave has the hydrostatic form 

P,fX, y)*pA-p,gy as X + & O O ,  (2.2) 

in which p 2  is the (constant) density in layer 2. At these great distances from the solitary 
wave crest, the interface between layers 1 and 2 becomes horizontal, with Y-t H, and 
the dynamic condition that the two pressures p 1  and p z  in (2.1) and (2.2) should be 
equal on the line Y = H then yields the constant A ,  in (2.1) as 

Although the fluid in lower layer 2 is flowing rotationally, it is nevertheless possible 
to integrate Euler's equations of motion once, to yield a Bernoulli equation of the type 

in which C is a constant on any particular streamline, but may vary across streamlines. 
Now the interface itself is a streamline, and equating the pressure p ,  at the interface to 
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FIGURE 1. A sketch of the flow configuration in dimensionless coordinates. The interface is taken 
from a portion of an actual solution for an atmospheric interfacial solitary wave, with parameters 
CL = 0.05, ,4 = 20, R = 0.2. The wave is close to the maximum, and has amplitude A = 1.35, with 
computed ground speed F z 0.2981. (In dimensional variables with interface height H = 400 m, 
computed speed c z 19 m s-l). The scale on both axes is the same. 

pressure p 1  there, as given by (2.1) and ( 2 . 3 ) ,  the Bernoulli condition (2.4) at the 
interface becomes 

+ g Y  = $ ( ~ + ( , J H ) ~ + -  p4 on interface. (2.5) 
PZ 

At this point it is convenient to introduce non-dimensional variables and parameters, 
and these will be used exclusively from now on. All lengths are scaled with respect to 
the undisturbed depth H of the interface far from the wave, and the quantity (gH)’’’ 
is taken as the reference speed. (Note that our choice of dimensionless variables differs 
slightly from the usual practice, in which the speed c+  wH at the interface is taken as 
the reference dimensional speed; see e.g. Vanden-Broeck (1994). This has the 
disadvantage that the speed c, which is yet to be determined, appears in combination 
with the vorticity w in the formation of a dimensionless parameter, and the influence 
of the vorticity upon the wave speed is therefore difficult to quantify). With this choice 
of non-dimensionalization, the atmospheric solitary wave will be seen to depend upon 
five dimensionless parameters. These are the Froude number F = c/(gH)l’ ,  which is a 
measure of the horizontal wind speed at ground level, and the vorticity parameter 
D = o(H/g)’I2.  There is also a parameter CL = (gH) / (RT , )  that is effectively a measure of 
the compressibility of the air in upper fluid layer 1, since it is the ratio of the square 
of the speed of an infinitesimal disturbance in layer 2 to that in layer 1 ; if a +. 0 then 
the upper fluid becomes incompressible. This parameter is referred to by Belward & 
Forbes (1995) as an ‘expansion parameter’. The fourth constant p = P A / ( p , g H )  
indicates the ratio of the pressure at the ground to the hydrostatic pressure due to lower 
layer 2 alone. Thus p > 1, and in the limit p- 1, the upper fluid is absent. The final 
parameter in the description of the atmospheric solitary wave is the amplitude A ,  
defined to be the dimensionless height difference in the interface between the crest and 
the far field. A sketch of a typical flow is given in figure 1. 

The velocity components u2 and u, in the lower fluid 2 are now separated into purely 
rotational and irrotational components by writing 

U ,  = F t D y $ U ,  P, = V ,  (2.6) 
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in which dimensionless coordinates are denoted as x = X / H  and y = Y / H ,  as in figure 
1. Since the fluid in layer 2 is incompressible, then div q2 = 0 and it is therefore possible 
to define a streamfunction $2 that satisfies this condition identically, by means of the 
relations 

In addition, the augmented velocity components U and V in the relation (2.6) both 
satisfy conditions of incompressibility and irrotationality, so that it is possible to define 
a pseudovelocity potential and streamfunction @ and Y, respectively, by 

The relationship between the true streamfunction $2 and the pseudostreamfunction Y 
in lower fluid 2 is therefore seen to be 

$2 = Fy+&’y2+ Y. (2.9) 

v,=O on y = O ,  (2.10) 

At the ground, the usual impermeability condition 

applies, and at the interface, the vanishing of the normal component of velocity leads 
to the kinematic boundary condition 

v 2  = u,(dy/dx) on interface. (2.1 1) 

~ ( u ~ + v ~ ) + ( / l -  l)e”(l-”)+y = +(F+L?)2+P, (2.12) 

In dimensionless form, the interfacial Bernoulli equation (2.5) becomes 

and an additional condition 

A = y(O)-y(m) on interface (2.13) 

defines the wave amplitude. 
The unknown interface is now parameterized by means of an arclength s, following 

Forbes (1985), such that s = 0 at the wave crest. The interface profile is therefore 
sought in the form (x(s),y(s)), and it follows that these two functions are related by the 
arclength condition 

(2.14) 

Because the interface is a streamline, it is straightforward to show, using (2.7), that 
d$,/ds = 0 along the interface. Differentiating the relation (2.9) and using (2.8) 
therefore gives 

dY - = -(F+Oy)- d Y  
ds ds 

(2.15) 

on the interface. The irrotational parts Uand Vof the velocity components in (2.6) may 
be expressed in the forms 

U(s) = x’(s) @’(s) + y’(s) “(s), 

V(s) = y’(s) @’(s) - x’(s) “(s), 

on the interface, where use has been made of the relations (2.14) and (2.15). 

(2.16) 
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An integral equation method is now employed, to satisfy the field equations (2.8) and 
bottom condition (2.10) identically, so that only variables at the free boundary need be 
considered. This procedure has become standard in recent years, and therefore need 
only be described briefly here. 

The relations (2.8) reveal that the complex quantity W =  U-iV is an analytic 
function of complex coordinate z = x+iy in lower fluid 2. Cauchy’s integral formula 
may be applied to this function, around a path consisting of all interface points (x(t), 
y ( t ) ) ,  - m < t < m ,  except that fixed point (x(s),y(s)) which must be by-passed by a 
semi-circular contour of vanishingly small radius lying in fluid 2, an image free 
boundary below the level JI = 0 of the actual ground, and two connecting lines at 
infinity. Thus 

= 0, 
W(z(t)) z’(t) dt 

4 0  - 4 s )  
(2.17) 

on the path described. By making use of the reflection conditions to eliminate variables 
on the image free boundary, and exploiting the symmetry of the wave about the y-axis, 
the imaginary part of Cauchy’s integral formula (2.17) eventually yields the integral 
equation 

(2.18) 

after use has been made of the relations (2.14) and (2.16). The second integral on the 
right-hand side is singular in the Cauchy principal valued (CPV) sense. This integral 
equation (2.18) can be shown to be equivalent to that presented by Vanden-Broeck 
(1 994). 

3. Numerical solution 
It is possible to develop highly efficient numerical algorithms for the solution of the 

fully nonlinear problem (2.12)-(2.18), which only solve explicitly for one function, say 
y’(s), and the Froude number F, with all other quantities determined implicitly. When 
discretization is carried out using a mesh of N grid points, such schemes solve for a 
minimal set of N unknown quantities. However, it has been observed here that these 
schemes are seriously lacking in robustness, for a reason that is still unclear, so that 
successful iteration to a solution is generally unlikely. By contrast, more inefficient 
schemes that simply solve for all variables on the free surface simultaneously have been 
found to be highly stable, and one such method is briefly outlined below; on a mesh 
of N grid points, it solves for a vector of 3N+ 1 unknown quantities. A method based 
on a similar philosophy has also been used by Vanden-Broeck (1994). 
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A mesh of N grid points s,, ..., sN is placed over an appropriate interval of the 
interface, with s, = 0 corresponding to the wave crest and the last grid point s, chosen 
to be sufficiently far downstream. An initial guess is made for the vector of unknowns 

of length 3N+ 1, and this vector is corrected iteratively, using Newton's method to 
force an error vector E(u) to zero. On the basis of this initial estimate, all the other 
required functions at the interface can now be computed, using (2.15), (2.16) and (2.6). 
The first N components of the (3N+ 1)-vector E are obtained from the arclength 
condition (2.14) at the N points s,, . .., s,, and the next N -  1 components come from 
the Bernoulli equation (2.12) at the points sl, . . ., 

A further N -  1 conditions to be satisfied result from evaluating the integral equation 
(2.18) at the N -  I half-grid points s ~ + , / ~ ,  j = 1, .. ., N -  1, and these form the next N -  1 
components of the error vector E. The integrals in (2.18) are evaluated using 
trapezoidal rule integration, and by placing the singular point sj+ljz midway between 
the collocation points used in the evaluation of the integrals, the Cauchy principal 
valued singularity in the second integral cancels, by symmetry, and so can be ignored. 

At the wave crest, it is necessary to specify 

x, = 0, y1 = 1 + A ,  
and thus the remaining three components of the error vector E result from the 
symmetry condition 

at the wave crest, and the two downstream conditions 

at the last point s,. 
When N = 151 points, it is usually sufficient to choose the last grid point to be 

s, = 15, and then Newton's method is generally observed to converge within five or six 
iterations to an accurate solution. As an initial guess to the algorithm for small wave 
amplitudes A,  the soliton solution of Stoker (1957) has usually been employed, in the 
approximate form 

y; = 0 

y,-l=O, @:,=O 

F z eAiz, 
y(s) z I + A  sech' ( ~ K s ) ,  

@'(s) z -AFsech'(i~s), 

in which K = Larger amplitude waves, or solutions having large vorticity 52, are 
easily obtained by bootstrapping, using a previously computed nonlinear solution for 
different parameter values as an initial guess. 

4. Review of single fluid results 
Before presenting results for the new atmospheric interfacial solitary waves, it is 

useful to review briefly the behaviour of solitary waves on the free surface of a single 
incompressible fluid layer. This can be done simply in the present model by setting 
ol=Oand/3= 1. 

Four wave profiles are shown in figure 2, for vorticity parameter 52 = 0.6, and for 
increasing wave amplitudes A = 0.4, 0.8, 1.2 and A = 1.54. As the amplitude A is 
increased, the solitary wave becomes narrower and more sharply peaked, as is evident 
from the diagram. The largest wave shown here is close to a fold bifurcation point, in 
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FIGURE 2. Solitary waves for a single fluid layer, a = 0, ,8 = 1, and vorticity Q = 0.6. Wave profiles 
are shown for four different values of the amplitude, A = 0.4, 0.8, 1.2 and A = 1.54 (close to the fold 
bifurcation in figure 4). 

ylor 

~ 1 5  -1 0 -5 5 10 15 
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FIGURE 3. Solitary waves for a single fluid layer, a = 0, ,b’ = 1, and vorticity Q = 1.4. Wave profiles 
are shown for four different values of the amplitude, A = 2, 4, 6 and A = 8. 

the vicinity of which the wave attains both its maximum speed and amplitude; this 
point will be discussed further later. At this value of vorticity, D = 0.6, the branch of 
solutions is ultimately limited by the formation of a corner at the wave crest, enclosing 
an angle of 120°, exactly as for periodic gravity waves (see, e.g. Schwartz & Fenton 
1982). 

Very different behaviour is encountered if the vorticity D is sufficiently large, 
however, and this is illustrated in figure 3 for the case D = 1.4 and the four values of 
wave amplitude A = 2, 4, 6, 8. The branch of solitary wave solutions obtained here is 
now no longer limited by the formation of a corner at the wave crest, and from the 
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F + Q  
FIGURE 4. Bifurcation diagram for solitary waves on a single fluid layer, a = 0 and ,8 = 1 .  The dashed 
line is the locus of limiting waves that possess stagnation points at their crests, which enclose an angle 
of 120". Eight bifurcation curves are shown; from left to right the values of vorticity are Q = 0, 0.2, 
0.4, 0.6, 0.8, 1, 1.2 and Q = 1.4. 

mathematical point of view, the amplitude A is free to increase without limit. That this 
is true for sufficiently large vorticity, even for waves influenced by gravity, was 
apparently first shown by Vanden-Broeck (1994). As the amplitude A increases, the 
solitary waves develop a more rounded appearance, owing to the strongly rotating 
fluid enclosed within the wave, and for sufficiently large amplitude, vertical portions 
appear on the profile. The wave shown in figure 3 ,  for A = 8, is close to the point at 
which these vertical tangents are formed. 

It is presumably the case that solitary waves with vertical sides represent the largest 
amplitude configurations that would be stable in practice, yet the mathematical 
solution to (2.12)-(2.18) permits waves of larger amplitude to be obtained. These are 
known to possess overhanging portions in the profile, so that the wave becomes 
mushroom shaped, and they persist for arbitrarily large values of amplitude A .  Such 
waves much surely be unstable, as they involve regions of heavy fluid overlying a 
lighter one, and have therefore not been sought in detail here. Nevertheless, limiting 
forms of great amplitude for these waves are presented by Vanden-Broeck (1994). 

A useful summary of the results for pure solitary waves in single fluid systems may 
be constructed by means of a bifurcation diagram, in which the Froude number F, 
computed essentially as a nonlinear eigenvalue of this problem, is shown against the 
wave amplitude A .  Such a diagram is presented in figure 4 for the single fluid case 
a = 0, p = 1, and has been constructed from the results of approximately 300 separate 
converged solutions. The amplitude A is shown on the vertical axis, and on the 
horizontal axis is plotted the dimensionless speed F+SZ of the wave at the interface. 

The dashed line in figure 4 is the curve along which solitary waves have reached their 
limiting form, with a corner at their crests, enclosing an angle of 120". This curve may 
be deduced simply from the Bernoulli equation (2.12) which, for p = I ,  yields 

A,,, = i (F+Lq2,  
and this follows from the fact that the wave crest has become a stagnation point for 
this limiting configuration, where uB = v, = 0. Thus solitary wave solutions are not 
possible in the region of parameter space above this parabolic dashed line in figure 4. 
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A sequence of bifurcation curves is also shown, for values of the vorticity 52 that 
increase in uniform increments. The points of intersection of these curves with the 
horizontal axis have been computed from the formula given by Benjamin (1962), and 
then continued numerically to larger amplitudes. From left to right, the eight curves 
(sketched with solid lines) correspond to 52 = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4. When 
shear is absent in lower fluid layer 2, 52 = 0, there is an increase in interfacial speed 
F+Q with the wave amplitude A .  until the limiting wave is formed with a corner at the 
crest. For small values of 52 > 0, this pattern is repeated, except that a small fold 
bifurcation is evident, so that the fastest solitary wave for a given vorticity l2 occurs 
before the maximum height is attained. For larger values of 52, this fold bifurcation is 
present, but considerably more pronounced, to the extent that at  52 = 1.2 there is a 
large interval of wave speeds for which two solitary waves of different height are 
possible, and the solitary wave evidently achieves both its maximum height and speed 
in a neighbourhood of the fold. The limiting form, with the corner at its crest, is neither 
the largest nor the fastest wave that can form when 52 = 1.2. The results shown for 
52 = 1.2 (the penultimate curve to the right of figure 4) represent the largest value of 
vorticity 52 at which the bifurcation curve undergoes this fold ; in this case the accuracy 
of the numerical method becomes slightly unreliable as the curve approaches the 
limiting form (dashed line), and has not been pursued further. 

The last curve on the far right of figure 4 has been obtained with vorticity 52 = 1.4, 
and its behaviour is qualitatively different to curves obtained at lower values of 52. It 
neither undergoes a fold bifurcation nor does it  ever approach the limiting curve 
sketched with a dashed line on the diagram. Thus, when 52 = 1.4, the curve continues 
indefinitely, so that waves of arbitrarily large amplitude A are possible, at least as 
mathematical solutions. Some of these have been illustrated in figure 3, and as A 
increases, it is eventually the case that overhanging portions develop in the wave 
profiles. Of course, such waves are unlikely to be stable to small perturbations in a fully 
time dependent calculation. 

This concludes the review of results for the single fluid solitary wave, obtained with 
c1 = 0 and /3 = 1. These results essentially constitute a summary of solutions obtained 
by Vanden-Broeck (1994) for free-surface solitary waves, although we use the quantity 
(gH)lI2 as the dimensional reference speed for the waves. By contrast, Vanden-Broeck 
makes use of the unknown phase speed c in his unit of speed, and this quantity is then 
involved in the formation of his vorticity parameter. In fact, the relationship between 
Vanden-Broeck’s vorticity coL- and inverse Froude number squared G,- and our 
parameters 52 and F is 

1 
G = ~ 

52 
F+ 52’ (F+52)2’ 

O ) , ~  = __ 

We believe the parameter choice in the present paper to be more natural, in the sense 
that the Froude number F and vorticity parameter 52 defined here are genuinely 
independent, but the disadvantage is that a direct comparison with Vanden-Broeck’s 
results is now somewhat difficult. Nevertheless, estimates based on figure 2 in Vanden- 
Broeck (1994) indicate quantitative agreement between our results and his. 

5. Interfacial solitary waves in the atmosphere model 
When a > 0 and /9 > 1, the model of $ 2  represents the situation of major interest in 

this paper, i n  which an incompressible fluid layer moves beneath a stationary 
compressible atmosphere, and a solitary wave forms along the interface. This is 
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FIGURE 5. Atmospheric interfacial solitary waves, for a = 0.05, p = 20, and vorticity SZ = 0. Wave 
profiles are shown for three different values of the amplitude, A = 0.18, 0.36 and A = 0.54. 

evidently the condition leading to the morning glory of the Gulf of Carpentaria in 
Australia's far north, where morning sea breezes penetrate far inland. Notice that, far 
from the wave crest, the density jump across the asymptotically flat interface is 

Ap = a(P- 1)- 1, (5.1) 
and this must be negative if a physically meaningful result is to be achieved, in which 
lighter fluid overlies heavier fluid. 

A great number of numerical solutions has been generated, and bear substantial 
similarities to the single fluid case discussed in $4. In this section, we present detailed 
results for the case 01 = 0.05, /3 = 20, since these parameter values are representative of 
the conditions pertaining to the morning glory phenomenon in this model, and satisfy 
the physical requirement that the density jump Ap in expression (5.1) must be negative. 
(In fact, since Ap is a small quantity, it follows that ,!I must be chosen to be only slightly 
less than 1 + l / a )  

Figure 5 shows three wave profiles for this case a = 0.05, p = 20, for a situation in 
which there is no shear in the lower fluid layer 2, f2 = 0. In this diagram, the wave 
amplitudes are A = 0.18, 0.36 and 0.54, and the largest of these is close to the wave of 
maximum height, at which a corner stagnation point enclosing an angle of 120" forms 
at the wave crest. The computed Froude numbers for these three wave profiles are 
respectively 0.2490, 0.2720 and 0.2901 ; in dimensional variables, with the interface 
height chosen to be H = 400 m, which is consistent with the observations for the 
morning glory in the Gulf of Carpentaria, these Froude numbers correspond to wave 
speeds of 15.6, 17.0 and 18.1 m s-l, and these are all within the measured range for 
morning glories. Note that, since shear is absent in the lower layer 2 for these results, 
the horizontal wind speed at the interface is the same as the speed along the ground. 

The effect of increasing shear in the lower layer is examined in figure 6(a), which 
shows three atmospheric solitary wave profiles for the case a = 0.05, p = 20 and 
vorticity D = 0.4, and wave amplitudes A = 0.8, 1.6 and 2.4. The largest of these 
waves, obtained with A = 2.4, is close to a point of fold bifurcation at which the wave 
attains a maximum speed, as will be seen later in this section. At this value D = 0.4 of 
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FIGURE 6. Atmospheric interfacial solitary waves, for a = 0.05, p = 20, and vorticity l2 = 0.4. (a) 
Wave profiles for three different values of the amplitude, A = 0.8, 1.6 and A = 2.4. (6) Internal flow 
structure for the solution with amplitude A = 2.4. 

the vorticity parameter, the solution branch of solitary waves is again ultimately 
limited by a configuration that has a corner stagnation point at its crest. 

On the basis of the wave speeds computed for the profiles shown in figure 6(a) ,  it  
seems likely that the value L? = 0.4 would represent the practical upper limit for shear 
in the lower layer, at least for solitary waves produced by a sea-breeze mechanism, as 
is the case for the morning glory in Australia. The three Froude numbers corresponding 
to the amplitudes A = 0.8, 1.6 and 2.4 shown in figure 6(u) are F = 0.2421,0.3624 and 
0.4579, and these give horizontal speeds of approximately 15.2, 22.7 and 28.7 m s-l at  
ground level, respectively, assuming an interface height H = 400 m above ground. 
Only the first of these, obtained for the wave of amplitude A = 0.8 gives a wave speed 
comparable with measured values, but even in this case, the speed at the interface, 
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F+D, increases to a value which in dimensional terms is approximately 40 m s-l 
(owing to the presence of the shear), and this apparently lies outside the measured 
range. 

On the basis of the computed wind speeds at D = 0.4, it would therefore appear that 
none of the waves in figure 6(a )  would correspond to an observed outcome for the 
morning glory solitary waves. However, the range of amplitudes (up to 2.4 times the 
depth of the moving lower layer) are within measured values. It is nevertheless possible 
that waves similar to these might perhaps result from a more violent meteorological 
event, such as the downdraft from a severe thunderstorm, for example; a recent article 
by Davies-Jones (1995) shows the way in which an intense, energetic thunderstorm can 
produce rain-cooled downdrafts (and their role in tornado formation is discussed). 

In figure 6(b) ,  the internal flow is shown for the largest wave in figure 6(a), obtained 
with CI = 0.05, ,I3 = 20, D = 0.4 and amplitude A = 2.4. The horizontal and vertical 
velocity components u, and v, (in a coordinate system moving with the wave) were 
computed using Cauchy’s integral formula to obtain the irrotational parts U and V,  
and then calculating u, and u ,  from (2.6). In fact, the formula for U within the wave 
is the same as (2.1 8), except that the interfacial coordinates x(s), y(s) are replaced with 
an internal point (x, y) ,  and the term nuts) on the left-hand side of (2.18) is replaced 
with 27tU. A similar expression for V is obtained by taking the real part of (2.17). 

Figure 6(b)  shows that, for waves of large amplitude, the vorticity D causes a re- 
circulating region of flow to form beneath the wave crest. This is consistent with 
Smith’s (1988) observations of the rolling within a morning glory wave. Associated 
with this phenomenon are strong downdrafts that would be experienced soon after the 
crest of the wave had passed an observer on the ground. These would certainly pose 
a wind-shear threat to low-flying aircraft. 

As with solitary waves on a single fluid layer, investigated in $4, the present 
atmospheric model also permits waves of arbitrarily large amplitude to form if the 
vorticity D is suitably large. To illustrate such waves, we present four profiles obtained 
with l2 = 0.8, and amplitudes A = 2,4, 6 and 8 in figure 7(a) .  These are similar to the 
single fluid results displayed in figure 3 ,  although the crests are rather broader. The 
largest of these waves, obtained with A = 8, is again close to a configuration having 
vertical sections in the profile; larger waves possessing overhanging sections are a 
theoretical possibility, but would presumably be unstable owing to the fact that 
portions of the heavier, incompressible fluid for layer 2 would then overlie lighter, 
compressible fluid from layer 1, and no attempt has been made to compute such waves 
here. As indicated above, it is highly unlikely that atmospheric solitary waves similar 
to those in figure 7 ( a )  would be observed at all, in view of the very large vorticity 
D = 0.8 required to produce them, and so these results have been presented purely for 
completeness. 

A plot of the internal flow within the largest of the waves in figure 7(a) is given in 
figure 7(b) .  Here, the amplitude is A = 8 and the other parameters are CI = 0.05, /3 = 
20 with vorticity D = 0.8. The velocity components u, and v, were computed from the 
known interface profile using Cauchy’s integral formula, as explained in the discussion 
of figure 6(b), and clearly show a pronounced region of rotating flow within the wave 
crest. Close behind the crest is a region of very severe downdraft, associated with the 
re-circulation in the crest. It is unlikely that an atmospheric solitary wave of such large 
amplitude would be encountered in practice, and so the extreme low-level wind shears 
shown in figure 7(b) are fortunately not likely to be of concern. 

We conclude this section with a summary bifurcation diagram, showing the relations 
between the computed wave speeds and the amplitudes, for five different families of 
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FICURF 7 Atmospheric interfacial solitary waves, for a = 0 05, p = 20, and vorticity 52 = 0 08 (a)  
Wave profiles foi four different values of the amplitude, A = 2, 4. 6 and A = 8 (b)  Internal flow 
structure for the solution with amplitude A = 8 

waves corresponding to five different values of the vorticity parameter R. Figure 8(a) 
shows results for the horizontal wind speed FsR at the interface, and the speed F 
along the ground is illustrated in figure 8(b). 

The dashed line in figure 8(a)  is the locus of limiting solitary waves, for which a 
corner enclosing an angle of 120" is formed at the crest. It has been obtained by setting 
velocities to zero in the Bernoulli equation (2.12), and hence determining that 

( F S  a)rrL,,, = [ 2 ~  + 2(p- 1) (e-xA - 1)]'/'. (5.2) 

This expression (5.2) reduces to the previous formula (4.1) in the single fluid limit 
p+ 1. Solitary waves are not possible in the region above this dashed line in figure 8(a). 

Five bifurcation curves have been presented in figure 8(a), and are based on the 
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FIGURE 8. Bifurcation diagram for atmospheric interfacial solitary waves, for the case a = 0.05 and 
,8 = 20. Five bifurcation curves are shown, for values of vorticity SZ = 0, 0.2, 0.4, 0.6 and 0.8. (a) 
Speed F+Q at the interface. The dashed line is the locus of limiting waves that possess stagnation 
points at their crests, which enclose an angle of 120". (b) Speed F a t  the ground. 

results of over 300 separate converged solutions obtained by the Newton algorithm of 
$2. From left to right, the curves correspond to vorticities D = 0, 0.2, 0.4, 0.6 and 0.8, 
increased in equal increments. When shear is absent, D = 0, the amplitude increases 
until the limiting configuration is obtained, with its corner stagnation point at the crest. 
As D is increased, a fold bifurcation becomes evident in the curves, so that when 
vorticity has been increased to D = 0.6, the effect of this fold is very strong, with a large 
overlap region formed, in which two different solitary waves are possible at the same 
speed. When D is increased beyond about D = 0.6, the solution branch produced no 
longer intersects the dashed curve, and in these cases, there is thus no finite limiting 
wave. A solution branch of this type is shown to the far right of figure 8(a), for 
D = 0.8, and at this large value of the vorticity, the solitary waves are free to 
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increase without limit, eventually forming overhanging portions in their profiles. As 
indicated above, however, it is unlikely that results for which 52 > 0.4 would ever be 
observed in practice. 

The equivalent diagram for the Froude numbers F is given in figure 8 (b), so that the 
horizontal axis corresponds to the air speed at ground level. The fold bifurcations in 
the solution branches are evident for 52 < 0.6, but when Q = 0.8 a different qualitative 
behaviour is possible, where the wave may in theory increase without limit. 

A comparison of the bifurcation diagram figure 8(u)  for this case with the 
corresponding picture (figure 4) for the genuine single-fluid case, discussed in $4, shows 
that the effect of the small compressibility parameter J can indeed be profound. In 
the single-fluid case, figure 4 shows that, for background vorticity 52 = 0.8 for example, 
there is a wave of maximum amplitude A z 2.08. By contrast, it is evident from figure 
8 ( a )  that, for the same value of vorticity Q = 0.8, the inclusion of compressibility 
effects permits the wave to become arbitrarily large. This represents a very dramatic 
difference between the two theories. Nevertheless, it is unlikely that such large 
vorticities 52 would be observed frequently in the atmosphere. 

6. Conclusions 
In this paper, recent results of Vanden-Broeck (1994) for solitary waves in the 

presence of shear have been extended to a two-layer atmospheric model, in which the 
lower layer is regarded as incompressible, and the stationary upper fluid is a 
compressible ideal gas. This is a simple model of interfacial waves in the atmosphere, 
and was first proposed by Forbes & Belward (1992). The present paper therefore 
extends the Forbes-Belward work by considering solitary wave formation in such an 
atmospheric system, and additionally including shear in the lower layer. In a later 
paper, Forbes & Belward (1994) allowed motion in the upper fluid, but concluded that 
this had little effect on interface shapes or wave speeds, for upper fluid speeds of 
magnitudes that would actually be encountered in the present situation. Consequently, 
the upper fluid is taken to be stationary in the model discussed here. Nevertheless, the 
characteristic width of interfacial solitary waves may be influenced significantly by the 
motion in the upper fluid, at least in weakly nonlinear theory, as described by Christie 
(1992) and Rottman & Einaudi (1993). 

It has been found that atmospheric interfacial solitary waves computed by this 
model are qualitatively similar to solitary waves in a single fluid. When shear in the 
lower moving fluid is either absent or small, the solitary wave is ultimately limited by 
the formation of a corner at the wave crest, in which an angle of 120" is enclosed. For 
large shear, however, such a free-surface stagnation point is prevented from occurring, 
and consequently, the solitary wave can increase without limit, ultimately forming 
overhanging portions in its profile. These mushrooni-shaped waves would presumably 
be unstable to small perturbation, and so would not be seen as steady-state structures 
in the laboratory. 

This atmospheric solitary wave model appears to give a plausible qualitative 
description of the remarkable 'morning glory' waves that are observed in the far north 
of Australia; spectacular photographs of this phenomenon are to be found in the 
review paper of Christie (1992). Comparison of the computed wave speeds with 
measured values for the morning glory wave suggests that our model only retains 
validity for modest values of the shear in the lower fluid, B & 0.4, so that the extremely 
large amplitude overhanging waves that are theoretically possible for large vorticity 52 
are in any case unlikely ever to be observable. 
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It appears that the model proposed in this paper will provide a useful method for the 
prediction of atmospheric solitary wave amplitudes or speeds. An additional advantage 
of the present model, which is not shared by Korteweg-de Vries type approximations, 
is that the internal flow characteristics of the wave can be predicted easily, once the 
interface has been determined. Such a calculation allows downdraft wind shears to be 
estimated, for example. This is of interest in the case of the spectacular morning glory 
effect, but may be of even greater importance in the case of invisible clear-air solitary 
waves, which, as indicated by Christie & Muirhead (1983), could pose a significant 
hazard to low-flying aircraft. 

In the present work, as in Forbes & Belward (1992, 1994), the upper atmosphere has 
been assumed to be isothermal, so that exponential decay of pressure and density with 
height occurs. This modelling simplification has produced plausible morning glory 
results. Nevertheless, it would be possible to accommodate more complex atmosphere 
models into the present formulation, and an obvious candidate for future research 
would be one in which a linear temperature decay region underlies an isothermal 
atmosphere. 

The assumption of constant vorticity 52 permits the numerical solution to be obtained 
using the powerful methods of complex-variable theory and integral equations. 
Nevertheless, the measured pre-glory wind profiles of Smith (1988) indicate that the 
vorticity is only constant in the lowest 300 m or so of atmosphere, and that the vorticity 
changes sign at higher altitudes. This most probably explains the fact that our model 
tends to over-estimate the morning glory wave speeds while giving wave amplitudes 
within experimental values (for appropriate values of 52). There is limited scope for 
accounting for this vorticity reversal in the present integral-equation based 
formulation, and it would be necessary to partition lower fluid 2 into two regions, one 
with a positive vorticity and the upper region possessing negative vorticity. Two 
interfaces would then be present in the fluid, and a problem of considerable complexity 
would result. For more general vorticity distributions, the integral-equation approach 
would have to be abandoned, and finite-difference or finite-element techniques would 
be required. Such an investigation is outside the scope of this paper, but the qualitative 
agreement of the results obtained here with field data would suggest that such an 
approach is not urgently needed. It is also possible that closer agreement with 
experiment may be obtained by considering waves in which regions of non-zero 
vorticity are embedded within an irrotational stream. Such a study is beyond the scope 
of the present investigation, and is left to future research. 
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